Approaches to learning and student self efficacy in project-based Marketing education

Chad Habel
The University of Adelaide, Adelaide, Australia
chad.habel@adelaide.edu.au

Cullen Habel
The University of Adelaide, Adelaide, Australia
cullen.habel@adelaide.edu.au

This study explores academic practice and student outcomes in three Marketing topics at an Australian university. A questionnaire collected data on approaches to learning and academic self efficacy, and data analysis sought to explore relationships between these two constructs as well as the effect of study after the topics. The research found a strong relationship between approach to learning and academic self efficacy, but surprisingly little support for work-integrated learning as a means of improving students’ self efficacy.

Keywords: work-integrated learning, approaches to learning, academic self efficacy

Introduction

Current developments in higher education include a shift towards a professional focus for academic programs in response to the emergence of the knowledge economy and employer demand (Richardson, Kaider, Henschke & Jackling, 2008). This shift is occurring in a wider context of stronger links between universities and the VET sector as a part of the Commonwealth’s higher education reform agenda (Department of Education, Employment and Workplace Relations, 2009).

In this environment, project-based learning is becoming more and more common: many faculties are reviewing their topic curricula with a view to integrating work-skill development, so that achievement in the topic more closely resembles preparedness for the workplace. One approach to curriculum design is constructive alignment which, it is hoped, will encourage students to adopt a “deep” approach to learning (Biggs, 2003; Jones, 2006). One means of achieving this involves a “live case” format, where students are responsible for some final product, such as a research report or marketing plan for a real (often paying) client (Helle, Tynjälä & Olkinuora, 2006). The measurement of students’ self efficacy has also received a great deal of attention (see, for example, Bandura, 1997; Robbins et al., 2004; Elias & Macdonald, 2007). However, little research has investigated the relationship between a student’s approach to learning and their sense of self efficacy.

In view of the extant literature, this research has the following three objectives:

- investigate the nature of the relationship between the depth of a student’s approach to learning and their sense of self efficacy;
- observe how a student’s sense of self efficacy evolves through a program of study; and
- compare project-based learning to a didactic course in terms of self efficacy outcomes.
The context of the research is a set of three different courses in a commerce degree, all three of which are in the Marketing field. This has been important in the validation of the Marketing Education Self Efficacy scale (MARKESE): since self efficacy is considered to be a domain-specific trait, its measurement needs to be highly context specific (Robbins et al., 2004). A further facet is the difference in the nature of the courses: half of the sample studied in a didactic – textbook based – course while the other half embarked on a live market research project for a live client using principles similar to those of Kennedy (2001). This has allowed for a comparison of how the implementation of project-based learning principles affects a student’s sense of self efficacy in comparison to more traditional curriculum design.

This paper proceeds as follows: research questions are developed and these research questions are addressed with four hypotheses that are developed from a review of the literature. The measurement instruments (the revised two-factor study process questionnaire R-SPQ-2F and MARKESE) are introduced and investigated with respect to their validity and reliability, and the hypotheses are tested using these measurement tools. Implications for course design and further research are also discussed.

Background

This research was conducted in the context of a major curriculum review of topics within a school of commerce at an Australian university. As a part of their continuous improvement and accreditation process, the school has been increasingly documenting their curriculum and assessment design. Rubrics were designed using the broad conceptual framework of the Research Skill Development Framework (Willison & O’Regan, 2007), although of course they were designed to reflect the intended learning outcomes of the topics, which were oriented towards accumulating a body of knowledge and practical application of that knowledge. The courses were Consumer Behaviour, a second year course, and third year courses International Marketing and Market Research. A brief review of the course frameworks is provided in Appendix 1, and the engagements and assessments of the project-based topics reflect many of the work-ready attributes identified by Frawley and Litchfield (2009).

The courses differ in one major way. We refer to the Consumer Behaviour and International Marketing courses as “didactic” – the exercises and assessments are drawn from textbooks or some other traditional exercise. The Market Research course is considered to be “project-based”, where the continuous assessment component comes from the execution of a market research project for an industry client, designed to “integrate rule-based knowledge with real world problems” (Catanach, Croll & Grinaker, 2009, p. 583). In particular, the “project-based” course involves explicit engagement with a projected workplace. Throughout the continuous assessment, students focus on delivering value to their clients; refining research questions; designing measurement tools; and data collection, analysis and reporting. In contrast to the didactic courses where the objective is to receive a good mark from the academics, the students in the Market Research course were made to “feel the heat” of working for an often demanding client.

The “project-based” approach met with varying levels of approval from the students; course feedback indicated high median scores of 5 and 6, respectively, on the items “My confidence in dealing with unfamiliar situations is increased” and “My research skills are increased”. A number of the qualitative comments noted the value of dealing with real clients – “you refine/develop researching skills, real client increases your motivation”. Conversely the
detractors tended to comment about the vagaries of group work, the volume of workload and the feeling of being a little “lost” throughout the project.

The differences between these two styles of course allow for a comparison between traditional and work-integrated approaches to learning.

Literature review and hypothesis development

When (re-)designing a curriculum, the focus should not be on the content to be covered, nor the materials to be used, nor the activities of the teachers, but on the student’s activities and how they are likely to lead to the outcomes intended for them. To encourage this kind of student-centred learning, directed specifically towards clear intended learning outcomes, one approach is that of “constructive alignment” (Biggs, 2003). This involves clearly identifying the intended learning outcomes, expressed as concrete verbs of what students are expected to have learnt by the end of the topic.

The benefits of constructive alignment have been well documented in the literature. A constructively-aligned curriculum, if used in conjunction with criterion-based assessment, has the potential to develop a “truly learner-centred” learning environment which can lead to superior learning outcomes (Jones, 2006). Furthermore, using constructive alignment enables, among other things, the integration of graduate attributes into business and marketing programs (Treleaven & Voola, 2008). This makes it highly relevant for students who are preparing to enter professions. Essentially, the main effect of constructive alignment is that it encourages students to adopt a “deep” approach to learning, where they are more interested in deep structures of meaning, relationships between ideas, and application of theory to practice than merely rote-learning facts and figures to achieve the highest grade possible (Marton & Saljo, 1976).

While approaches to learning are crucial in this research (especially given the curriculum design undertaken), they are not the only important factor in this learning environment. Indeed, Biggs’ theory originally separates deep and surface approaches out into motivation, strategy and achievement orientations (Biggs, 1987a), although the final factor was removed in the revised version of the SPQ (Biggs, Kember & Leung, 2001). Some researchers even conflate aspects of motivation and approach: “Surface approach students are anxious about failing and concerned about their abilities to cope with the nature and amount of work” (Fazey & Fazey 2001, p. 348). Aside from the danger of labelling students with a static approach, this statement runs the risk of simply conflating two separate factors. This relationship between approaches to learning and academic self efficacy needs clearer exploration with analysis of recent data, which leads to our first two hypotheses:

H1: A “deep approach” to learning is positively related to academic self efficacy.

H1a: A “surface approach” to learning is negatively related to academic self efficacy.

The current research also explores the academic self efficacy of students in its own right. Albert Bandura defines perceived self efficacy as “beliefs in one’s capabilities to organise and execute the course of action required to produce given attainments” (Bandura, 1997, p. 3, emphasis in original). One clear gap in the literature on self efficacy is that much of it appears to focus on pre-tertiary education (see Andrade et al., 2009; Caprara et al., 2008; M ulton et al., 1991). In contrast, Zajacova (2005) focussed specifically on adult students – that is,
students over 25 years of age – but this does seem to be unusual in the field, and so there is a clear need for an exploration of self efficacy in the tertiary environment.

Self efficacy is not an omnibus trait: it is domain-specific, which means that it relates to specific areas of activity rather than an individual’s whole being. This is particularly important because, according to Robbins et al. (2004), academic self efficacy is the best choice out of a range of psychosocial factors that predict the college outcomes of performance and persistence across a wide range of studies, because it is “narrower and apparently more relevant to college-related behaviours” (p. 275). It is therefore essential to tailor teaching and learning activities and research methodologies to task-specific contexts.

Self efficacy is affected by four sources (Bandura, 1997). The most important of these is “enactive mastery experiences”: the opportunity for students to experience the completion of specific tasks and achieve some success in that completion. This leads us to expect that students with more experience in their study will have higher self efficacy, and thus we propose the following hypotheses:

H2: Measures of academic self efficacy will be higher for students that are further into their program of study.

H3: Measures of academic self efficacy will be higher after the completion of a course of study.

An emphasis on approaches to learning does not imply an exclusively abstract or theoretical model. Indeed, constructive alignment can help to prepare students for their future profession (Biggs, 2003): in work-integrated learning programs, it drives towards outcomes designed to prepare students for the workforce. In professional degree programs, non-technical skills are highly valued by students, but unfortunately they are often only developed outside of a university educational context (Richardson et al., 2009). Context is essential for the development of work-ready curricula (Frawley & Litchfield, 2009), as it is with self efficacy. Given the integration of contextualised work-ready skills into the curriculum, as well as the context-specificity of academic self efficacy, it could be expected that students completing the “project-based” course would experience higher increases in self efficacy than those in the “didactic” topic, hence:

H4: Academic self efficacy will be improved more by a course involving real clients than by a “didactic” course.

Method

The sampling frame consisted of students enrolled in one or more of three Marketing topics in semester 2, 2009. The topics were Consumer Behaviour (a second year course with 250 students), International Marketing (a third year course with 160 students) and Market Research (a third year course with 120 students). Concurrent enrolments meant that the size of the sampling frame was 400. These 400 students were invited to participate in our study and were offered an entry into a draw for a $100 gift voucher. This offer was conditional upon the students completing a questionnaire before and after their semester courses. The initial survey received 82 responses – a 20.5% response rate – and then 58 of those 82 took the second survey. Of the total 58 respondents, the sample was divided into 29 students studying Market Research and 29 studying the other topics.
The survey was administered online using Qualtrics software just prior to [T1] and after [T2] assessment in the topics. The survey was divided into three parts, the first exploring approaches to learning; the second exploring academic self efficacy as it related to the topics in question, and the third gathering some demographic and relevant personal information. The two scales were adapted from scales established in the literature.

Approaches to learning

One instrument used to measure approaches to learning is the Study Process Questionnaire (Biggs, 1987a; Biggs, 1987b). Support for construct validity and test-retest reliability can be found in Burnett and Dart (2000) and Jones (2002). In 2001, Biggs, Kember and Leung revised the SPQ and found that the final version had “very good psychometric properties” (Biggs, Kember & Leung, 2001, p. 145). This revised version of the questionnaire (R-SPQ-2F) was ideal for the current research, and it was adapted in minor ways to reduce redundancy and bias. These minor adaptations are supported by the recommendation that “the SPQ can be more sensitive when worded for a particular subject” (Eley, 1992, cited in Biggs, Kember & Leung 2001, p. 138). This tool was designed with two factors, Deep Approach (DA) and Surface Approach (SA), which were measured at T1 and T2. Items asked students how often they would agree with a statement such as “I work hard at my studies because I find the material interesting”.

Academic self efficacy

A single instrument to measure academic self efficacy is not relevant for all situations, although broad principles for item construction are suggested by Bandura (1997) and Urdan and Pajares (2006). As previously mentioned, self efficacy is a domain-specific trait, and especially in research it is highly context-sensitive (Pajares, Johnson & Usher, 2007). Therefore, we developed MARKESE, the Marketing Education Self Efficacy Scale – an instrument broadly based on the Academic Self Efficacy Scale (Elias & Loomis, 2002; Elias & MacDonald, 2007). The researchers collaborated closely to develop appropriate items based on the course design, that is, the topics’ intended learning outcomes and assignment rubrics. These task-items aimed to be as specific and relevant to the topic as possible, whilst also being relevant to all three topics. Students were asked to indicate their confidence (on an electronic visual analogue scale) in their ability to complete 16 different tasks, for example, “Write a three-page assignment with 90% correct grammar and punctuation”. Whilst dimensionality does exist within this measurement tool, for the purposes of this study we considered the overarching measure of “Self Efficacy” at T1 and T2.

The survey acquired Ethics Approval from the University’s Human Research Ethics Committee (approval number H-110-2009) and was also approved by the University’s Survey Reference Group (reference number 2008/5218).

Measurement of constructs

Approaches to learning

For both T1 and T2, the measurement of deep and surface approach showed good levels of reliability with Chronbach’s alpha scores in excess of 0.8. A principal components factor analysis yielded two factor solutions (Eigenvalues >1) in all four cases, with the need to remove only one item (“I test myself on important topics until I understand them completely”) in DA2, due to substantial cross loading across both factors. The two factor solutions explained more than 50% of the variance across all items – a modest result but one we considered adequate for our purposes.
We were content with two factor solutions for the approaches to learning, given the theoretical roots of the questionnaire. Biggs (1987a; 1987b) had originally proposed the sub-dimensions of “Motivation” and “Strategy” under these two broader approaches and this seems to be occurring here. A deeper investigation of the sub-dimensions is, however, outside the scope of this paper, and is in any case not recommended by Burnett and Dart (2000). The ten items were averaged for each respondent, and yielded normally distributed variables (Shapiro-Wilk test p>0.05) for the four constructs. Finally, as table 2 shows, these composite measures correlated to each other in the way one would expect – positive from one survey to the next, but a negative correlation between deep and surface approaches. This is further evidence of the validity of the measures.

Table 1: Measurement of approaches to learning

<table>
<thead>
<tr>
<th>Construct [T1]</th>
<th>Code</th>
<th>Chronbach’s alpha</th>
<th>Factors</th>
<th>Final # items</th>
<th>% Variance explained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Approach</td>
<td>DA1</td>
<td>0.85</td>
<td>2</td>
<td>10</td>
<td>54.8</td>
</tr>
<tr>
<td>Surface Approach</td>
<td>SA1</td>
<td>0.82</td>
<td>2</td>
<td>10</td>
<td>52.2</td>
</tr>
<tr>
<td>Deep Approach</td>
<td>DA2</td>
<td>0.84</td>
<td>2</td>
<td>9</td>
<td>57.6</td>
</tr>
<tr>
<td>Surface Approach</td>
<td>SA2</td>
<td>0.83</td>
<td>2</td>
<td>10</td>
<td>52.3</td>
</tr>
</tbody>
</table>

Table 2: Pearson correlations between approaches to learning (n=58)

<table>
<thead>
<tr>
<th></th>
<th>Deep Approach T1</th>
<th>Surface Approach T1</th>
<th>Deep Approach T2</th>
<th>Surface Approach T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Approach T1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Approach T1</td>
<td>-0.671**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Approach T2</td>
<td>0.755**</td>
<td>-0.638**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Surface Approach T2</td>
<td>-0.612**</td>
<td>0.728**</td>
<td>-0.590**</td>
<td>1</td>
</tr>
</tbody>
</table>

** significant at p<0.01
* significant at p<0.05
Academic self efficacy
For the purposes of this study, we will not consider the dimensionality of MARKESE, however initial indications are that three items used to measure each of the dimensions are yielding single factor solutions and explaining around 64% of the variance across items, with Chronbach’s alphas greater than or equal to 0.7 in most cases.

For this exploratory study we chose to take the average of all 16 items in both the T1 and T2. These yielded Cronbach’s alpha scores around 0.9, and satisfied tests for normality (Kolmogorov-Smirnov p>0.05). The set of factors with Eigenvalues >1 account for around 70% of the variance in the sample. The T1 and T2 measures for self efficacy correlate to each other with a Pearson coefficient of 0.68 (p<0.05). This high correlation makes sense – it is, after all, the same student responding to both studies after a relatively short period of time – but the fact that it is not greater indicates some change within the students from T1 to T2. Figure 1 gives the histograms for these measures, where the initial indications are that self efficacy appears to have increased on average with a tightening of the spread and an increase of the skew towards positive self assessment.

Figure 1: Histograms for self efficacy, measured before and after the marketing courses

Results
Table 3 shows how we tested H1 and H1a (on relationships between approach to learning and academic self efficacy) by considering the bivariate correlations between measures of “approach to learning” and “self efficacy” for both T1 and T2.
Table 3: Correlations between approaches to learning and self efficacy (n=58)

<table>
<thead>
<tr>
<th></th>
<th>Deep Approach T1</th>
<th>Surface Approach T1</th>
<th>Self Efficacy – T1</th>
<th>Deep Approach T2</th>
<th>Surface Approach T2</th>
<th>Self Efficacy – T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Approach T1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Approach T1</td>
<td>–.671**</td>
<td>1</td>
<td></td>
<td>–.590**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Self Efficacy – T1</td>
<td>.451**</td>
<td>–.424**</td>
<td>1</td>
<td>.348**</td>
<td>–.291*</td>
<td>1</td>
</tr>
</tbody>
</table>

** significant at p<0.01
* significant at p<0.05

Because the correlations present as expected and they are all significant (p<0.05), **H1**, that a “deep approach” to learning is positively related to academic self efficacy is supported.

H2 stated that measures of student self efficacy will be higher for students that are further into their program of study. This can be addressed by comparing the means between two groups of students: those who were studying the third year (Market Research) course and those who were not. **Table 4** provides the results of an independent samples t-test, given that the variables met the assumptions of normality and equality of variances.

Table 4: Comparison of self efficacy means between second and third year students

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Efficacy T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td>29</td>
<td>74.7</td>
<td>13.25</td>
<td>2.46</td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td>Third Year</td>
<td>29</td>
<td>78.1</td>
<td>10.94</td>
<td>2.03</td>
<td>Mean Diff</td>
</tr>
</tbody>
</table>

The significance level of p=0.285 indicates a high probability that the differences we see in the sample mean are simply due to the variability within that sample. There is therefore no support for **H2**, that students further into their program feel a greater sense of self efficacy.

H3 stated that measures of self efficacy will be higher after the completion of a course of study. **Table 5** shows the results of a paired samples t-test, showing substantial support (p<0.05) for the proposition that the mean increase of 4.4 points over the period of the semester is not an illusion brought about by the variability within the sample. **Thus H3**, that measures of self efficacy will be higher after the completion of a course, is supported.
Table 5: Comparison of self efficacy means, before and after marketing courses

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Mean</th>
<th>N</th>
<th>Std. Dev.</th>
<th>Std. Error Mean</th>
<th>Paired Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Std. Error Mean</td>
<td>Mean</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Self Efficacy</td>
<td>T1</td>
<td>76.4</td>
<td>58</td>
<td>12.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>
| Self Efficacy | T2 | 80.7 | 58 | 10.9 | 1.4 | 4.4 | 9.3 | 1.2 | 3.6 | 57 .001

Finally, H4 (comparison of didactic and project-based topics) can be addressed by repeating the above analysis for the two subsets of students; those who studied the didactic course and those who studied with a live client in the project-based course.

Table 6 shows that the mean measure increased by 5.9 for the didactic course, compared to the more modest 4.4 for the entire sample; the result is significant at the p<0.01 level.

Table 6: Change in self efficacy after a didactic course

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Mean</th>
<th>N</th>
<th>Std. Dev.</th>
<th>Std. Error Mean</th>
<th>Paired Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Std. Error Mean</td>
<td>Mean</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Self Efficacy</td>
<td>T1</td>
<td>74.7</td>
<td>29</td>
<td>13.2</td>
<td>2.5</td>
</tr>
</tbody>
</table>
| Self Efficacy | T2 | 80.6 | 29 | 10.0 | 1.9 | 5.9 | 9.9 | 1.8 | 3.2 | 28 .003

When the same analysis is conducted for a project-based course, the difference in sample mean is less, and a great deal less significant. As table 7 indicates, the increase in self efficacy measure is a modest 2.8 and the significance level is only 0.088 indicating only p<0.10. That means that the before and after scores – statistically – could be considered comparable (if not equal) for the project-based course.

Table 7: Change in self efficacy after the project-based Market Research course

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Mean</th>
<th>N</th>
<th>Std. Dev.</th>
<th>Std. Error Mean</th>
<th>Paired Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Std. Error Mean</td>
<td>Mean</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Self Efficacy</td>
<td>T1</td>
<td>78.1</td>
<td>29</td>
<td>10.9</td>
<td>2.0</td>
</tr>
</tbody>
</table>
| Self Efficacy | T2 | 80.9 | 29 | 11.8 | 2.2 | 2.8 | 8.5 | 1.6 | 1.8 | 28 .088

Research and Development in Higher Education Volume 33
Given the lack of significance in result for the project-based course, plus the fact that the increase in sample mean is less than for the didactic course we find no support for H4, that academic self efficacy will be improved more by a course involving real clients than by a “didactic” course.

Discussion

As a first reflection, we note that the R-SPQ-2F performed modestly, explaining just over 50% of the variance across all items in the sample. This suggests that further refinements to the scale would be in order, and perhaps a reduction in the number of items used, given that the instrument is not aiming to capture four sub-dimensions of approach to learning. By contrast, MARKESE performed better, accounting for around 70% in its stronger factors – although the discriminant validity of these dimensions requires further investigation.

The most original finding of this study is that there is a positive relationship between a deep approach to learning and higher academic self efficacy as well as surface approach and low self efficacy. It stands to reason that students who look for deeper structures of meaning and the application of theory to practice will have more confidence in their abilities, and that they are not seeking to simply impress in order to achieve higher grades.

The most surprising finding of this study was the lack of support for Hypothesis 4, that students studying a project-based course will achieve higher gains in academic self efficacy. One would expect that those experiencing a more authentic workplace experience would feel more confident in their studies. However, this hypothesis was not disproven, just unsupported through a lack of statistical significance. This result is possibly explained by anecdotal evidence that some students found the project-based topic confronting and challenging, due to the “baptism of fire” approach of some of the clients. Clearly, further research in this area is warranted, and some exploration of the sub-dimensions of MARKESE might shed light on this matter. Indeed, the development of a work-ready self efficacy scale (and its administration to students newly in the workplace) may be justified in the light of this finding. After all, lack of statistical significance does not necessarily mean lack of educational significance.

Another interesting finding is the contrast between the results on Hypotheses 2 and 3. Clearly, there is a statistically significant increase in academic self efficacy before and after particular courses of study. However, there is no observable difference between students in second and third year. This bodes well for individual topics (that they are exposing students to appropriate sources of self efficacy), but not so well at the program-level, suggesting perhaps some need for more consistency of approach across the program. This has been addressed to some extent by the program-wide curriculum review at the university where this study was undertaken, but perhaps effects on self efficacy should also be taken into consideration.

Conclusion

Ultimately, this study found that students who were likely to adopt a deep approach to learning also feel more capable of completing specific academic tasks, which suggests that measures to constructively align topics may complement attempts to increase academic self efficacy. In addition, while students did tend to feel more confident in their abilities after specific topics, this was not related to their stage of progress in their program. Most significantly, work-integrated learning may not have the positive effects on self efficacy that
might be expected. These findings may encourage new approaches into the effectiveness of programs seeking to develop work-ready skills within graduates.

References

Copyright © 2010 Chad Habel and Cullen Habel. The authors assign to HERDSA and educational non-profit institutions a non-exclusive license to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive license to HERDSA to publish this document in full on the World Wide Web (prime site and mirrors) and within the portable electronic format HERDSA 2010 conference proceedings. Any other usage is prohibited without the express permission of the authors.
Appendix 1: Assessment and engagement progression for the three Marketing courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Type</th>
<th>Engagement 1</th>
<th>Assessment 1</th>
<th>Engagement 2</th>
<th>Assessment 2</th>
<th>Assessment 2a</th>
<th>Assessment 3</th>
<th>Exam essay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Behaviour</td>
<td>Didactic</td>
<td>Content introduction by lecturer</td>
<td>Consumption journal</td>
<td>Tutorial discussions of application</td>
<td>Consumer portrait – self analysis</td>
<td>Tutorial participation</td>
<td>Tutorial – theory to application presentation</td>
<td>Consumer decision process and family lifecycle</td>
</tr>
<tr>
<td>International</td>
<td>Didactic</td>
<td>Content introduction by lecturer</td>
<td>Online quizzes</td>
<td>Tutorial discussions of application</td>
<td>Tutorial – theory to application presentation</td>
<td>Case study assignment</td>
<td>Market entry plan for theoretical new product</td>
<td>Discuss the theories of standardisation in market entry</td>
</tr>
<tr>
<td>Research</td>
<td>Project-based</td>
<td>“Meet the clients” in lecture</td>
<td>Research proposal</td>
<td>“Client meeting” on premises</td>
<td>Market research report</td>
<td>Present findings to client</td>
<td>Journal and reflection on project</td>
<td>Discuss the research process with project examples</td>
</tr>
</tbody>
</table>
