Student evaluation: what predicts satisfaction?

Helen Dalton
University of New South Wales, Sydney, Australia
h.dalton@unsw.edu.au

Nida Denson
University of Western Sydney, Sydney, Australia
nida.denson@gmail.com

The main goals of course evaluations are to obtain student feedback regarding courses and teaching for improvement purposes and to provide a defined and practical process to ensure that actions are taken to improve courses and teaching. Of the items on course evaluation forms, the one that receives the most attention and consequently the most weight is the question, “Overall, I was satisfied with the quality of this course.” However, no attention has been placed on examining the predictors of students being ‘satisfied with the quality of this course’ overall. This study attempts to address this gap. The findings show that while student characteristics and reasons for enrolling in a course are predictors of overall satisfaction, it is the evaluation questions that predict the majority of the variation in course satisfaction. The findings also reveal that faculty-selected optional questions are stronger predictors of overall satisfaction than compulsory questions. This unique finding suggests that faculties are in tune with their students’ needs and experiences as they have chosen questions which are more predictive of overall satisfaction with course quality. This study has provided the basis for future exploration. In a changing culture towards ‘compliance and accountability’ there is a shift to performance indicators, increasing reliance on outputs such as student evaluations of teaching by government bodies, university performance reviews and rewards. This considered; there is some urgency in ensuring that we know what these instruments are in fact measuring and that these instruments are designed to be reliable and valid.

Keywords: student ratings, course evaluation, overall satisfaction

Introduction and background

Student evaluations of teaching are not a new phenomenon. The first teacher rating scale was published in 1915, and was followed by a wave of research on student evaluations of teacher effectiveness from the mid-1920s (Wachtel, 1998). However, research on the subject and uptake was slow and throughout the 1960s the use of student evaluations was not common, and almost entirely voluntary. In the 1970s, research on the topic entered a “golden age” in which the utility and validity of student evaluations of teaching (SET) were closely scrutinized (Centra, 1993). Since then, the research literature reports a focus on clarifying and amplifying previous findings, as well as synthesising the available research (Algozzine et al., 2004). Seldin (1993) reported that between 1973 and 1983 the use of SETs increased from 29% to 86% in USA colleges and universities. Today, SETs are widely used instruments in higher education. SETs are similarly popular in the UK and Australia (Richardson, 2005).
Student Evaluations of Teaching (SETs)

Purpose and characteristics
Typically, SETs have been used for the following purposes: (1) as a developmental tool for providing feedback to staff about their teaching; (2) as a measure of teaching effectiveness to make personnel decisions; (3) to assist students in selecting courses or units and teaching staff; and (4) as a source of data for research on teaching (Marsh et al., 1989). SETs are increasingly being used for making decisions about recognition through promotion, awards and grants. Traditionally, staff members have supported the use of student evaluations as a developmental tool, but challenge the use of such measures to make personnel decisions or to direct students in their course selections. Despite this, few instructors voluntarily make use of course evaluation results in order to improve their instruction never mind the curriculum. One study found that only 3 to 10% of instructors reported making major changes in their teaching as a result of course evaluations (Nasser & Fresko, 2002). Regardless of their application, SETs tend to share several common characteristics (Algozzine et al., 2004; Sproule, 2000):

a) A mixture of open-ended and close-ended questions;
b) A single item which addresses overall teaching satisfaction/effectiveness;
c) Written comments about the course or instructor;
d) Anonymity;
e) Responses are obtained at the end of the term, in the absence of the instructor;
f) Responses are analysed to develop question-specific and class-specific measures of central tendency.

While evaluations provide instructors with student feedback about their “teaching effectiveness” (Sproule, 2000), the ultimate goal is to improve student learning outcomes. Therefore, it seems reasonable to suppose that the focus of most SETs should be factors that facilitate student learning. In general, however, SETs have a teaching, rather than a learning [or curriculum] focus. In a teaching-focused evaluation, the course components that are evaluated are the teacher and the teaching process. In contrast, if the evaluation is learning and curriculum-focused, possible objects to evaluate are the quality of learning outcomes or processes and even sustained knowledge transfer from other courses undertaken. Research suggests that whilst evaluation questionnaires always include ratings of teachers and teaching activities, students are rarely asked to assess their own learning or to consider their own work – despite the fact that such information could be used to improve the curriculum in order to better support the desired learning outcomes (Edstrom, 2008).

Recently, there has been a push for student satisfaction to become the focus of SETs, stemming from the belief that the student is a customer of the university. Taking such a perspective, when using SETs for developmental and summative purposes, teachers are directed to make changes intended to increase student retention and attraction. However, whilst student satisfaction is an increasingly popular construct within SETs, some researchers have noted that satisfaction remains at this time a complex and poorly articulated idea, influenced by a wide variety of contextual factors. Further, it isn’t universally accepted that satisfaction is even a desirable outcome of university education (Richardson, 2005).

Predictors of overall satisfaction
A variety of factors have been revealed as predictors of students’ overall satisfaction at the institution level and the degree level. For example, Elliot and Shin (2002) identified that, at
the institution level, the majority of factors which predicted student satisfaction related to
course and teaching quality: excellence of instruction, ability to get to classes (or convenient
timetabling), knowledgeable faculty, quality of instruction, clear and reasonable requirements
for each major, fair and unbiased staff, and access to information. Similar findings have been
revealed at the degree level. For example, G inns, Prosser and Barrie (2007) identified five
factors that predicted overall student satisfaction with their degree: good teaching (which
incorporates providing feedback), clear goals and standards, appropriate assessment,
appropriate workload and generic skills.

Similarly, Richardson, Slater and Wilson (2007) determined the correlation between survey
items and overall student satisfaction with their degree. Final results indicated that teaching
and support had the highest correlations with overall satisfaction \(r = .68 \) and \(r = .59 \)
respectively. These factors included items such as teaching skills (e.g., making the subject
interesting, explaining and enthusiasm) and teacher support and advice throughout the course.
In addition, assessment \((r = .54) \), generic skills \((r = .50) \) and feedback \((r = .47) \) had a
moderate correlation with overall satisfaction. Surprisingly, workload \((r = .17) \) had a
comparatively small correlation with overall student satisfaction – suggesting that the
difficulty of the course may not bias student evaluations as once assumed.

These university- and degree-level findings have not migrated seamlessly to evaluations of
individual classes or courses. Whilst developing a 31-item evaluation instrument allowing
students to rate both their courses and their teachers’ instructional skills, Spooreen,
Mortlemans & Denekens (2007) identified 10 factors that influence overall student
satisfaction:

1. Clarity of objectives
2. Value of subject matter
3. Build-up of subject matter
4. Presentation skills
5. Harmony organization course-learning process
6. (Course materials) contribution to understanding the subject matter
7. Course difficulty
8. Help of the teacher during the learning process
9. Authenticity of the examinations
10. Formative examinations

Of these factors, several studies have indicated that students think that those related to
improving teaching quality are significantly more important than those aimed at improving
course content (see Chen & Hoshower, 2003). Fortunately, because many universities
evaluate both course content and teaching quality separately, researchers have been able to
isolate and identify teaching-related factors that lead to increased satisfaction amongst
students. For example, Shevlin, Banyard, Davies and Griffith (2000) created a list focused on
the lecturer whilst examining the relationship between charisma and ratings of teacher
effectiveness (e.g., the lecturer has charisma, the lecturer was very approachable).
Unfortunately, whilst these individual factors predicted overall satisfaction, the majority of
the variance in item responses could be explained by the students’ personal view of the
lecturer rather than their lecturing ability or course attributes.
Factors that bias SET

Though a number of legitimate teaching-related and course-related factors demonstrably predict overall student satisfaction, some researchers contend that the SET process is riddled with bias and have identified a number of factors unrelated to learning outcomes which appear to influence overall student satisfaction (Pounder, 2007; Wachtel, 1998). Pounder (2007) has categorised these biases into three broad areas: student-related factors, teacher-related factors and course-related factors. These factors can be further disaggregated into specific biases with various degrees of literature support.

Student-related factors
The first student-related factor is gender. In particular, female students tend to rate their teachers higher than their male counterparts (Tatro, 1995). There is also a strong interaction effect between student gender and teacher gender in that female students tend to rate female teachers higher than male teachers on qualities such as being caring-expressive and interactive (Bachen, McLoughlin, & Garcia, 1999). Another factor is the maturity level and academic level of the student. For example, final-year students tend to be more lenient in their teacher ratings than first-year students (Frey, Leonard, & Beatty, 1975). This probably reflects the fact that older students, after several years in the tertiary education system, have more realistic expectations of their university experience. A third source of bias concerns students attempting to punish their teachers for low grades (Crumbley, Henry, & Kratchman, 2001).

Teacher-related factors
Turning to teacher-related characteristics, gender may or may not have an influence on SETs. Feldman (1993) conducted a meta-analysis examining this gender effect and showed that the majority of studies showed no effect. However, when there were significant differences between the genders, female teachers tended to receive more favourable ratings as compared to male teachers. Instructor rank and experience also seem to have an influence, with those instructors with higher ranks and more experience (e.g., professors) receiving higher ratings than those with lower ranks and less experience (e.g., teaching assistants) (Marsh & Dunkin, 1992). There are also influencing tactics and behavioural traits that are additional sources of teacher-related bias. Teachers’ influencing tactics include such things as grading leniency and bringing food to class on the day of the evaluations (Simpson & Siguaw, 2000). Teachers’ behavioural traits include likeability and personality (Cardy & Dobbins, 1986; Clayson, 1999).

Course-related factors.
In regards to course-related factors, there is evidence linking evaluation scores to expected grades. In general, students who received higher than expected grades were more positive, whereas those who received less than expected grades were more negative (Braskamp & Ory, 1994). These findings confirm the “leniency hypothesis” which suggests that students reward teachers who mark easily (Marsh, 1987). A second factor is class size whereas smaller class sizes tend to have higher evaluation scores than larger classes (Koh & Tan, 1997). Pounder (2007) suggests that smaller classes probably provide a greater opportunity for rapport building. However, the relationship between class size and student ratings seems to be non-linear (U-shaped) as teachers of very large classes tend to get higher ratings as well (Feldman, 1984). A third major course-related source of bias is related to course content. Harder courses tend to receive lower ratings (Pounder, 2007), as do required courses (Wachtel, 1998). For example, there are systematic differences between how courses are evaluated based on discipline, with Arts and Humanities subjects consistently being rated higher than the physical sciences, engineering, economics and business (Cashin, 1990). Course timing also appears to
influence SET results, with evidence suggesting that the time and day that a course is taught can have a significant impact on evaluation results (Husbands & Fosh, 1993).

The course and teaching evaluation and improvement process

At one research-intensive university, the current process and forms have been in use since 2004. The main goals of the process are to obtain student feedback regarding courses and teaching for improvement purposes and to provide a clearly defined and practical process to ensure that actions are taken to improve courses and teaching. The process includes a suite of four evaluation forms: evaluation of a course, large group teaching, small group teaching, and studio/design based teaching. While there are broad, general guidelines for the administration of the forms, the specific details may vary slightly to provide faculties with some flexibility.

For this study, only responses to the course evaluation form items were analysed as it is the only one that provides students the opportunity to evaluate a course. The form instructions provide some general guidelines for students when completing the evaluation form. While anonymous, the form asks students about a few selected student characteristics (i.e., full-time or part-time, international or local, and gender) as well as the main reasons for taking the course (i.e., required for program, relevant to career plans, interesting course, fit timetable, course reputation). There are a total of 12 questions that include 10 rating scale items and 2 open-ended items. Of the 10 ratings scale items, 8 are mandatory university-wide and 2 are faculty-specified from an extensive bank of optional questions. Thus, it is up to the faculties to decide the wording of the final 2 rating scale items. The 2 open-ended items are also mandatory and asked students about the best features of the course and the features of the course that could be improved.

Of all the items on the form, the one that has received the most attention and consequently the most weight is Question 10, “Overall, I was satisfied with the quality of this course.” However, since its inception, no study has examined what predicts a student being ‘satisfied with the quality of this course’ overall. This study attempts to address this gap.

Purpose of study

The purpose of this study is to examine predictors of overall satisfaction at the course level using a student evaluation of courses instrument at an Australian research-intensive university. Three research questions guided this study:

1. What student characteristics predict overall student satisfaction with course quality?
2. What reasons for enrolling in the course predicts overall student satisfaction with course quality?
3. What course evaluations questions predict overall student satisfaction with course quality?
 a) Which required questions are the strongest predictors of satisfaction?
 b) Are optional questions stronger predictors than the required questions of satisfaction?

Methodology

Sample

This study utilised all semester 1 and semester 2 course evaluations administered at the institution during the 2007 academic year. The final sample resulted in a total of 42,296 student course evaluations representing 2,141 courses.
Analytic Approach

A series of ordinary least squares (OLS) regression analyses were used to predict student satisfaction with the course overall. Thus, the dependent variable was overall satisfaction (i.e., Question 10). The independent variables were: student characteristics, student reasons for taking the course, and the other course evaluation questions (i.e., Questions 1 – 9). We employed a blocked entry regression analysis in which the independent variables were entered in four blocks: 1) Student characteristics (study mode, funding group, gender, progressive weighted average mark (WAM)), 2) reasons for enrolling in the course (required, relevant to career, interesting, fit timetable, and reputation), 3) the required questions (Questions 1-7), and 4) the optional questions (Questions 8 and 9). As a result, we were able to determine the additive predictive power of each block of variables.

Results

Descriptive Analyses

Table 1 presents the descriptive statistics for the student characteristics, student reasons for taking the course, and the course evaluation item variables. The courses included in the sample had an average of 59 enrolled students and an average response rate of 47%. Based on the limited student characteristics available, the student respondents were a representative sample of the student population at large. In regards to reasons for enrolling in the course, the most frequently cited reason was because it was a required course in the program (45%). The next most frequently cited reasons were because it was relevant to career plans (19%) and it seemed to be an interesting course to do (19%). Enrolling in the course because it fit the timetable (5%) and because of the reputation of the course (2%) were the least frequently cited reasons.

All the course evaluation items utilised a 4-point response scale, ranging from 1 = strongly disagree to 4 = strongly agree. The mean for satisfaction with course overall (Question 10) was fairly high at 3.11, falling between ‘agree’ to ‘strongly agree’. In fact, all the questions on the course evaluation form were also rated fairly high ranging from 2.91 to 3.16. An examination of the frequency distributions substantiates these findings, ranging from 75% of students who agreed that ‘I was given helpful feedback on how I was going in the course’ to 89% of students who agreed that ‘the aims of this course were clear to me.’
Table 1. Descriptive statistics for all variables.

<table>
<thead>
<tr>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study mode (Full-time = 0, Part-time = 1)</td>
<td>63637</td>
<td>0.00</td>
<td>1.00</td>
<td>0.23</td>
<td>0.00</td>
</tr>
<tr>
<td>Funding group (Local = 0, International = 1)</td>
<td>62857</td>
<td>0.00</td>
<td>1.00</td>
<td>0.24</td>
<td>0.00</td>
</tr>
<tr>
<td>Gender (Female = 0, Male = 1)</td>
<td>63594</td>
<td>0.00</td>
<td>1.00</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Progressive WAM</td>
<td>43546</td>
<td>0.00</td>
<td>97.00</td>
<td>68.32</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Student reasons for taking the course

<table>
<thead>
<tr>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required course in program</td>
<td>63891</td>
<td>0.00</td>
<td>1.00</td>
<td>0.45</td>
<td>0.00</td>
</tr>
<tr>
<td>Relevant to career plans</td>
<td>63891</td>
<td>0.00</td>
<td>1.00</td>
<td>0.19</td>
<td>0.00</td>
</tr>
<tr>
<td>Interesting</td>
<td>63891</td>
<td>0.00</td>
<td>1.00</td>
<td>0.33</td>
<td>0.00</td>
</tr>
<tr>
<td>Fit my time metabale</td>
<td>63891</td>
<td>0.00</td>
<td>2.00</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Reputati on of course</td>
<td>63891</td>
<td>0.00</td>
<td>2.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Course evaluation on item variables

<table>
<thead>
<tr>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 - The aims of the course were clear to me</td>
<td>63891</td>
<td>1.00</td>
<td>4.00</td>
<td>3.35</td>
<td>0.00</td>
</tr>
<tr>
<td>Q2 - I was given helpful feedback on how I was going in the course.</td>
<td>63887</td>
<td>1.00</td>
<td>4.00</td>
<td>2.91</td>
<td>0.00</td>
</tr>
<tr>
<td>Q3 - The course was challenging and interesting</td>
<td>63891</td>
<td>1.00</td>
<td>4.00</td>
<td>3.15</td>
<td>0.00</td>
</tr>
<tr>
<td>Q4 - The course provided effective opportunities for active student participation and learning activities</td>
<td>63891</td>
<td>1.00</td>
<td>4.00</td>
<td>3.13</td>
<td>0.00</td>
</tr>
<tr>
<td>Q5 - The course was effective for developing my thinking skills (e.g., critical analysis, problem solving)</td>
<td>63891</td>
<td>1.00</td>
<td>4.00</td>
<td>3.14</td>
<td>0.00</td>
</tr>
<tr>
<td>Q6 - I was provided with clear information about the assessment requirements for this course.</td>
<td>63692</td>
<td>1.00</td>
<td>4.00</td>
<td>3.16</td>
<td>0.00</td>
</tr>
<tr>
<td>Q7 - The assessment methods and tasks in this course were appropriate given the course aims.</td>
<td>63519</td>
<td>1.00</td>
<td>4.00</td>
<td>3.13</td>
<td>0.00</td>
</tr>
<tr>
<td>Q8 - opti on</td>
<td>63787</td>
<td>1.00</td>
<td>4.00</td>
<td>3.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Q9 - opti on</td>
<td>63891</td>
<td>1.00</td>
<td>4.00</td>
<td>3.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Q10 - Overall, I was satisfied with the quality of this course.</td>
<td>63555</td>
<td>1.00</td>
<td>4.00</td>
<td>3.11</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Multivariate Analyses

Table 2 presents a summary of the blocked entry regression analyses predicting satisfaction with course overall for all faculties combined. Each column contains the Betas (standardized regression coefficients) associated with a particular independent variable, after all of the variables in that block and preceding block of variables were entered into the regression model. Thus, for example in column 4 the Beta coefficient in block 3 for Question 1 'the aims of this course were clear to me' ($\beta = .15$) represents the Beta for this variable after the student characteristics, student reasons for enrolling in the course, and questions 1 through 7 were entered into the regression equation.
Table 2. Multivariate analyses of overall satisfaction with quality of course.

<table>
<thead>
<tr>
<th>Student characteristics</th>
<th>All Response Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β after Block 1</td>
</tr>
<tr>
<td>Part-time (vs. Full-time)</td>
<td>-.01</td>
</tr>
<tr>
<td>International (vs. Local)</td>
<td>.00</td>
</tr>
<tr>
<td>Male (vs. Female)</td>
<td>-.02 **</td>
</tr>
<tr>
<td>Progressive WAM</td>
<td>.04 ***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reason for enrolling in course</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason: Required course in program</td>
<td>-.04</td>
<td>-.04 ***</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Reason: Relevant to career plans</td>
<td>.10</td>
<td>.06 ***</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Reason: Interesting</td>
<td>.13</td>
<td>.10 ***</td>
<td>.02 ***</td>
<td>.02 ***</td>
</tr>
<tr>
<td>Reason: Fit my timetable</td>
<td>.01</td>
<td>-.04 ***</td>
<td>-.01 **</td>
<td>-.01 **</td>
</tr>
<tr>
<td>Reason: Reputation of course</td>
<td>.09</td>
<td>.07 ***</td>
<td>.01 ***</td>
<td>.01 ***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required questions</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The aims of this course were clear to me</td>
<td>.65</td>
<td>.25 ***</td>
<td>.11 ***</td>
<td></td>
</tr>
<tr>
<td>I was given helpful feedback on how I was going in the course</td>
<td>.63</td>
<td>.14 ***</td>
<td>.10 ***</td>
<td></td>
</tr>
<tr>
<td>The course was challenging and interesting</td>
<td>.69</td>
<td>.22 ***</td>
<td>.15 ***</td>
<td></td>
</tr>
<tr>
<td>The course provided effective opportunities for active student participation in learning activities</td>
<td>.64</td>
<td>.12 ***</td>
<td>.07 ***</td>
<td></td>
</tr>
<tr>
<td>The course was effective for developing my thinking skills</td>
<td>.68</td>
<td>.15 ***</td>
<td>.09 ***</td>
<td></td>
</tr>
<tr>
<td>I was provided with clear information about the assessment requirements for this course</td>
<td>.61</td>
<td>.10 ***</td>
<td>.07 ***</td>
<td></td>
</tr>
<tr>
<td>The assessment methods and tasks in this course were appropriate given the course aims</td>
<td>.68</td>
<td>.18 ***</td>
<td>.12 ***</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional questions</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 8</td>
<td>.71</td>
<td>.17 ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question 9</td>
<td>.73</td>
<td>.21 ***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All the required course evaluation questions 1 through 7 were significant positive predictors of course satisfaction in the final regression equation. The largest predictors of the required course evaluation questions were ‘the course was challenging and interesting’ (β = .15) followed by ‘the assessment methods and tasks in this course were appropriate given the course aims’ (β = .12). When the two optional course evaluation questions 8 and 9 were added to the regression in the final block, both were significant positive predictors of course satisfaction. In fact, these optional questions were the largest predictors of all the questions with Betas of .21 and .17. The next highest Beta was the required question ‘the course was...
challenging and interesting’ (β = .15). Thus, it appears that the optional questions have the greatest predictive power of all the variables in predicting overall satisfaction with quality of the course.

To assess practical significance of the statistically significant findings above, we examined the R², or explained variance, in overall satisfaction with course quality that is attributable to the predictors in the regression equation. By comparing the R² after each block, we can calculate the variance explained by each block of variables. After block 1, the explained variance (R²) is less than 1% meaning that the student characteristics accounts for very small variance in overall satisfaction with the quality of the course. The addition of reasons for enrolling in the course increased the explained variance to 3%, which is still trivial. When block 3 is added to the regression, the addition of the required questions increased the explained variance to 70%, meaning that the required questions account for two-thirds (67%) of the variance in overall satisfaction with the quality of the course. Finally, the addition of the optional questions increased the explained variance to 74%, indicating that 71% of the variance in satisfaction with course can be explained by all 9 of the course evaluation questions.

Discussion and future research

This study is part of a larger research project examining the validity of student evaluations of courses at an Australian research-intensive university. However, before we can assess validity, we need to first investigate what the current course evaluation instrument is measuring as a starting point. Thus, this study examined predictors of satisfaction at the course level using the current student evaluation of courses instrument. The descriptive findings demonstrate that there is little variation across the course evaluation items themselves, indicating little variation in ratings across items (including satisfaction) as well as across courses. In other words, the current course evaluation items appear to not be distinguishing amongst the courses. This finding aside, the multivariate findings show that the student characteristics, reason for enrolling in the course, and course evaluation items are predictive of overall student satisfaction with quality of the course. Altogether, these factors explain three-fourths of the variation in course satisfaction.

The general findings regarding student characteristics and reasons for enrolling in the course are consistent with the published literature. For example, gender (male) had a negative simple correlation with course satisfaction, indicating that males tend to give lower ratings as compared to females (Tatro, 1995). However, this gender effect becomes non-significant once the course evaluation items are taken into account. The finding that required courses tend to receive lower ratings than elective courses also confirms previous research (Scherr & Scherr, 1990). This finding becomes non-significant once the course evaluation items are taken into account. Analogous to this are the findings related to enrolling in the course because it is interesting (Prave & Baril, 1993) and because of expectations (Koermer & Petelle, 1991). While student characteristics and student reasons for enrolling in the course are predictors of overall satisfaction, it is the course evaluation items that predict the vast majority of the variation in course satisfaction.

This study extends previous research by examining the relative predictive power of the course evaluation questions on satisfaction with course quality. In particular, we compared the relative predictive power of the required course evaluation questions versus the optional questions. The findings show that the optional questions are stronger predictors of overall
satisfaction than the seven compulsory questions. This unique finding suggests that faculties appear to be more in tune with their students’ needs and experiences as they have chosen questions which are more predictive of overall satisfaction with course quality.

In a changing culture towards ‘compliance and accountability’ and a shift to performance indicators increasing reliance on outputs such as SETs by government bodies, university performance reviews and rewards, there is some urgency in ensuring that we know what these instruments are in fact measuring and ensure that these instruments are designed to be reliable and valid (Layzell, 1999). As Woodhouse reminds us - when choosing indicators, rankings should be based on what is relevant and important to student learning - not what can easily be measured (Woodhouse, 2008).

The findings from this study have provided us with the basis for future exploration. For example, what optional questions are the most predictive of overall satisfaction with course quality? Also, do these findings differ across the faculties? Do these findings differ across response rates? Are these student ratings of course evaluations valid? What are students’ views on the course evaluation instrument and process? What are staff views on the course evaluation instrument and process? We are currently exploring these questions in a larger research project.

References

Copyright © 2009 Helen Dalton and Nida Denson: The authors assign to HERDSA and educational non-profit institutions a non-exclusive license to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive license to HERDSA to publish this document in full on the World Wide Web (prime site and mirrors) on CD and in printed form within the HERDSA 2009 conference proceedings. Any other usage is prohibited without the express permission of the authors.